函数y=√(73x^2+1)+8x+33的图像示意图
本文主要介绍函数y=√(73x^2+1)+8x+33的定义域、单调性、凸凹性,并简要画出函数的图像示意图。
方法/步骤
1/8分步阅读函数为根式函数,即可解析函数自变量可以取全体实数,所以函数的定义域为:(-∞,+∞)。
[图]2/8设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。
3/8解析函数的单调性:求出函数的一阶导数,根据函数一阶导数的符号,判断函数的单调性。
[图]4/8如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。
5/8计算函数的二阶导数,根据二阶导数的符号,即可解析函数的凸凹性和凸凹区间。
[图]6/8二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y'=f'(x)仍然是x的函数,则y'=f'(x)的导数叫作函数y=f(x)的二阶导数。
7/8函数五点图,列表,函数上部分点解析表如下:
[图]8/8根据函数的定义域、值域、单调性、凸凹性、奇偶性以及极限等性质,以及函数的单调区间、凸凹区间,可画出函数的示意图。
[图]编辑于2024-11-10,内容仅供参考并受版权保护
经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。如需转载,请注明版权!
标题:函数y=√(73x^2+1)+8x+33的图像示意图 网址:http://www.toutiaojingyan.com/495ba8418519d779b20ede2b.htm
发布媒体:头条经验 作者:吉禄学阁