函数y=5x^3+6x^2的图像示意图
本经验通过函数的定义域、单调性、凸凹性、极限等性质,介绍函数用导数工具画函数y=5x^3+6x^2的图像的主要步骤。
主要方法与步骤
1/9分步阅读根据函数特征,本题为三次幂函数和二次函数的和函数,函数自变量x可以取全体实数,即定义域为:(-∞,+∞)。
[图]2/9设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。
3/9一阶导数的应用,判断函数的单调性:计算函数的一阶导数,求出函数驻点,判断函数一阶导数的正负,即可解析函数的单调性,进而得到函数的单调区间。
[图]4/9函数的单调性也叫函数的增减性。当函数 f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
5/9二阶导数可判断函数的凸凹性,主要过程为:计算函数的二阶导数,即可知函数的拐点,再根据二阶导数的符号,判断函数的凸凹性,进而解析函数的凸凹区间。
[图]6/9如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图像上的任意两点连出的一条线段,这两点之间的函数图像都在该线段的下方,反之在该线段的上方。
7/9判断函数在无穷远处和无穷近处的极限。
[图]8/9根据以上函数的主要特征,函数上部分点图表列举。
[图]9/9综合以上函数的定义域、值域、单调性、凸凹性和极限等性质,本例应用导数工具,计算单调和凸凹区间,函数的示意图如下:
[图]编辑于2024-11-13,内容仅供参考并受版权保护
经验内容仅供参考,如果您需解决具体问题(尤其法律、医学等领域),建议您详细咨询相关领域专业人士。如需转载,请注明版权!
标题:函数y=5x^3+6x^2的图像示意图 网址:http://www.toutiaojingyan.com/3072909c2f11b595143e6e6e.htm
发布媒体:头条经验 作者:吉禄学阁